首页> 外文OA文献 >Learning Potential Functions and their Representations for Multi-Task Reinforcement Learning
【2h】

Learning Potential Functions and their Representations for Multi-Task Reinforcement Learning

机译:学习潜在功能及其在多任务强化学习中的表示

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In multi-task learning, there are roughly two approaches to discovering representations. The first is to discover task relevant representations, i.e., those that compactly represent solutions to particular tasks. The second is to discover domain relevant representations, i.e., those that compactly represent knowledge that remains invariant across many tasks. In this article, we propose a new approach to multi-task learning that captures domain-relevant knowledge by learning potential-based shaping functions, which augment a task’s reward function with artificial rewards. We address two key issues that arise when deriving potential functions. The first is what kind of target function the potential function should approximate; we propose three such targets and show empirically that which one is best depends critically on the domain and learning parameters. The second issue is the representation for the potential function. This article introduces the notion of k-relevance, the expected relevance of a representation on a sample sequence of k tasks, and argues that this is a unifying definition of relevance of which both task and domain relevance are special cases. We prove formally that, under certain assumptions, k-relevance converges monotonically to a fixed point as k increases, and use this property to derive Feature Selection Through Extrapolation of k-relevance (FS-TEK), a novel feature-selection algorithm. We demonstrate empirically the benefit of FS-TEK on artificial domains.
机译:在多任务学习中,大致有两种发现表示的方法。首先是发现与任务相关的表示,即紧凑地表示特定任务解决方案的那些表示。第二个是发现领域相关的表示,即紧凑地表示在许多任务中保持不变的知识的表示。在本文中,我们提出了一种新的多任务学习方法,该方法通过学习基于势能的整形函数来捕获与领域相关的知识,该函数通过人工奖励来增强任务的奖励功能。我们解决了推导潜在功能时出现的两个关键问题。首先是潜在功能应该近似什么样的目标功能;我们提出了三个这样的目标,并凭经验表明,哪个目标最好取决于领域和学习参数。第二个问题是潜在功能的表示。本文介绍了k相关性的概念,即在k个任务的样本序列上表示形式的预期相关性,并认为这是相关性的统一定义,其中任务和领域相关性都是特殊情况。我们正式证明,在某些假设下,随着k的增加,k相关性会单调收敛到固定点,并使用此属性通过k相关性外推(FS-TEK)推导特征选择,这是一种新颖的特征选择算法。我们从经验上证明了FS-TEK在人工域上的优势。

著录项

  • 作者

    Snel, M.; Whiteson, S.;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号